
ZvLLM: Zigzag forward pass with vLLM

Henry Zhu
University of Illinois Urbana-Champaign

zhu109@illinois.edu

Siyuan Chai
University of Illinois Urbana-Champaign

siyuanc3@illinois.edu

Aditya Prerepa
University of Illinois Urbana-Champaign

prerepa2@illinois.edu

Abstract

Deploying Large Language Models (LLMs) on single GPU systems requires ef-
ficient resource management due to the limited availability and high demand of
computational resources. Traditional methods struggle with balancing computa-
tional overhead and memory usage, particularly for managing model weights and
key-value (KV) cache. To improve this, we adopt "Zigzag Scheduling" from the
FlexGen framework within the vLLM architecture, which delays offloading model
weights to secondary storage like CPU memory or disk. This approach allows
multiple batches to be processed before offloading, reducing memory transfer
frequency and minimizing I/O costs, thereby enhancing system efficiency. Zigzag
Scheduling further optimizes hardware usage by overlapping the loading of weights
for upcoming layers with the loading and storing of cache and activations for ad-
jacent batches, significantly increasing throughput and reducing idle times. The
integration of Zigzag Scheduling into vLLM not only streamlines memory man-
agement but also boosts overall performance, showing a 52% improvement in
throughput over traditional methods.

1 Intro

Efficient resource management is critical for deploying Large Language Models LLMs on platforms
with constrained resources such as single GPU systems. Traditional approaches often face chal-
lenges in balancing computational overhead and memory usage, particularly when managing model
weights and key-value (KV) cache. To address these challenges, we integrate "Zigzag Scheduling"
from the FlexGen framework with the vLLM serving architecture on a single GPU. This method
strategically delays the offloading of model weights to secondary storage—such as CPU memory or
disk—permitting the processing of multiple batches before any data offloading occurs. This reduces
the frequency of memory transfers, thereby minimizing I/O costs and enhancing overall system
efficiency.

Zigzag Scheduling optimizes the use of hardware by overlapping multiple operations: it synchronizes
the loading of weights for upcoming layers with the loading and storing of cache and activations
for adjacent batches. This overlapping maximizes throughput and minimizes idle times, allowing
current batch computations to proceed without delay. By integrating Zigzag Scheduling into the
vLLM framework, we capitalize on its efficient use of overlapping operations to improve system
performance and resource utilization on a single GPU.

Incorporating Zigzag scheduling to vLLM’s enhances its ability to manage large KV caches efficiently
and maintain high computational performance without the frequent need to reload weights from

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



secondary storage. We show a throughput improvement of 52% over the baseline (Huggingface
Accelerate)

2 Related Work

PagedAttention PagedAttention addresses the challenge of efficient memory management in the
serving of large language models (LLMs), particularly under the constraints imposed by the dynamic
and sizeable memory allocation required for the key-value (KV) cache during LLM operations.
Traditional methods often suffer from internal and external fragmentation issues because they allocate
memory contiguously for KV cache, which can vastly differ in required size during execution, leading
to inefficient memory utilization. PagedAttention, inspired by virtual memory systems in operating
systems, divides the KV cache into blocks that can be stored non-contiguously, thus reducing memory
waste and improving system throughput. This approach allows for flexible and dynamic memory
allocation, closely resembling the paging technique of operating systems, which handles memory
fragmentation by allowing data that is logically contiguous to be physically non-contiguous.

Figure 1: PagedAttention mapping to multiple blocks.

vLLM vLLM builds upon the foundation of PagedAttention to create a high-throughput, efficient
LLM serving system. It utilizes a block-level memory management system that significantly reduces
the wastage typically associated with KV cache memory allocation in existing systems. vLLM
supports various LLM architectures and sizes, making it versatile for different deployment scenarios.
By enabling near-zero waste in KV cache memory usage and flexible sharing across requests, vLLM
not only enhances throughput but also maintains low latency levels, competitive with state-of-
the-art systems like FasterTransformer and Orca. This system demonstrates particular efficiency
improvements in scenarios involving complex decoding algorithms, longer sequences, and larger
models, showcasing its capability to scale and manage memory more effectively than conventional
LLM serving solutions.

FlexGen FlexGen is a system for serving large language models with high efficiency and low latency.
It introduces a novel framework for model parallelism that combines tensor and pipeline parallelism
to enable efficient execution of large models across multiple devices. FlexGen employs a just-in-time
compilation strategy to optimize the execution plan for a given model and hardware configuration,
yielding performance gains over traditional model parallelism approaches. It also incorporates
techniques for effective memory management and communication optimization, allowing it to scale
to models with billions of parameters while maintaining low latency. The authors demonstrate
FlexGen’s efficacy through benchmarks on various model sizes and hardware setups, showcasing its
ability to serve large language models with high throughput and low overhead.

2



3 Background

The deployment of large language models in real-time applications has introduced significant chal-
lenges in terms of computational efficiency, particularly concerning memory management. LLMs,
such as those based on the Transformer architecture, require extensive memory resources (see 2)
primarily due to their need for maintaining large KV caches. These caches store the states needed for
generating text sequences, with each request dynamically altering the memory footprint depending
on the sequence length and complexity. Traditionally, memory management for LLMs has involved
static allocation, which can lead to inefficiencies such as memory fragmentation. This fragmentation
occurs because fixed-size memory blocks do not align well with the variable-sized data stored in KV
caches, leading to underutilized memory spaces and reduced throughput.

Figure 2: Rough idea of GPU Memory Usage; Serving Transformer-based models is memory bound.

The introduction of systems like PagedAttention and vLLM marked significant advancements in the
field of LLM serving by addressing these memory management issues. PagedAttention borrows
concepts from virtual memory systems used in operating systems, such as paging, to manage memory
fragmentation more effectively. It breaks down the KV cache into smaller, manageable blocks,
allowing them to be stored non-contiguously. This method not only mitigates internal and external
memory fragmentation but also enhances memory utilization by allowing more flexible data storage
and retrieval.

Building on the foundations laid by PagedAttention, vLLM implements a block-wise memory
management system that significantly improves the throughput of LLM serving systems. vLLM
organizes the KV cache into blocks, dynamically allocating and deallocating them based on the needs
of individual requests. This block-level management reduces wastage and allows for the serving of
larger models or more concurrent requests within the same hardware constraints. By reducing the
overhead associated with memory management, vLLM helps in maintaining low latency and high
throughput, crucial for cost-effective LLM serving.

Despite these improvements, neither PagedAttention/vLLM fully addresses the potential of integrating
more advanced memory hierarchies, such as swapping blocks to secondary storage devices. This
integration could further optimize memory usage during peak loads or for particularly large requests.
The idea of leveraging secondary storage is not new and has been explored in systems like FlexGen,
which proposes offloading entire KV caches to secondary storage. However, this approach can lead
to significant I/O overhead, especially when the data involved is large and not all of it is needed
immediately upon retrieval.

4 Motivation

Overcome Single GPU’s Memory Limitation While vLLM enabled blockwise memory manage-
ment for KV cahce, such PagedAttention algorithm does not apply for model weights. Thus, vLLM
fails to run models with size exceeding the GPU memory size on a single GPU. Nowadays, modern
workloads have over 10B parameters which easily oversize a single GPU memory size. For example,
Llama (2) has 70B, DBRX (6) has over 132 B, and Command R+ (1) has 104B parameters. Such
increasingly large model size can not be fit on a single GPU which has max memory size of 80GiB;
not to mention that commercial GPUs like RTX 3090 or 4090 have memory size of 24GiB. Even if
for smaller models like OPT 7B and 13B, GPU still quickly runs out of memory; for example, OPT
13B using FP16 will have at least 26GiB of memory.

3



To help overcome such challenges, we enroll CPU memory and SSD to help. Previous works like
ZERO-offlaod (4) and ZERO-infinity (3) offload offload part of weights and KV cache from GPU
memory to CPU memory and SSD. As shown in figure 5, CPU memory and storage which have much
larger capacity than a single GPU’s memory can be used to offload weights. Existing framework like
Flexgen has already enabled offloading to CPU memory by specifying the offloading percentage for
weights, cache, and activation. We ported the offloading strategy to vLLM for weights of model so
that vLLM can overcome the memory limitation of a single GPU.

Higher Throughput The other goal we wish to further improve the throughput. vLLM improves
throughput by increasing memory utilization and reducing memory fragmentation. We wish to further
improve the througput from the perspective of scheduling policy. We experiment the zig-zag policy
analyzed in Flexgen on vLLM. We anticipate an increment in throughput as it balances the offloading
of weights and KV cache.

5 Design & Implementation

Figure 3: Example of memory hierarchy

Figure 4: Row by row schedule and zig-zag schedule

Our approach hinges on two critical components. First, the finite capacity of GPU memory, currently
capped at 80GB, poses a significant constraint for larger models. To mitigate this limitation, we
leverage offloading techniques, which allow us to store weights in alternative storage mediums like
CPU memory and SSDs. While these memory tiers offer significantly larger capacity, as illustrated in
Figure 5, their longer access latency may hurt the throughut performance of the models. they also
introduce new challenges that must be addressed.

4



With offloading as our foundation, we delve into a comparative analysis of two scheduling techniques:
zig-zag block schedule and row-by-row schedule. These scheduling strategies play a pivotal role in
managing the transfer of weights between different memory tiers. By evaluating their performance
under the constraints of GPU memory limitations and the benefits of offloading, we aim to uncover
insights that can enhance the efficiency and effectiveness of model training for large-scale deep
learning applications.

Through our investigation, we seek to optimize the interplay between GPU memory limitations and
the potential of offloading weights to alternative storage. Our analysis compares the effectiveness of
zig-zag block scheduling and row-by-row scheduling techniques in managing weight storage across
different memory tiers. By elucidating the strengths and weaknesses of each approach, our study aims
to provide valuable insights for enhancing the performance and scalability of deep learning models.

5.1 Offloading

The integration of offloading techniques has been a focal point of research in recent years, with
notable advancements such as the percentage offloading method employed in FlexGen (5). Our
implementation extends this approach, allowing for the offloading of specific percentages of weights
to the GPU, CPU, and disk, providing a flexible and dynamic approach to memory management.

In our design, we modify the forward pass to facilitate offloading, ensuring that weights are seamlessly
swapped to the CPU after completing a pass. We built the offloading strategy on top of existing
vLLM implementation.

However, while offloading presents a promising solution, it poses challenges when integrated with
models like vLLM. Notably, vLLM pre-allocates CPU/GPU KV blocks, limiting our ability to manage
memory allocation in these blocks. As a result, our allocator cannot directly influence how vLLM
handles KV blocks, necessitating a nuanced approach to memory management in such contexts.

5.2 Zig-zag block schedule

The conventional approach to model computation involves passing one batch through each layer until
all layers have processed the input, resulting in one output. Figure 5-a illustrates the row by row
scheduling policy. However, this method becomes costly when employing offloading, as each input
and weight must be reloaded to GPU from CPU for every pass through each layer. An alternative is
to traverse the computation graph in a column all the way to the end; it computes next layer’s input
for all batches of data given current layer’s weight. This avoids weights reloading, but it’s typically
impossible to store KV cache and activation all in GPU memory.

To mitigate this, we adopt the zig-zag approach, a compromise between row and column traversal. It
aimes to maximize GPU utilization and reduce data transfer overhead. In the zig-zag approach, we
prioritize keeping the layer on the GPU for as long as possible to compute a particular input. This
involves passing multiple batches through a single layer consecutively. Each batch is loaded onto the
GPU, and computations are performed using the weights already residing on the GPU. While this
approach increases throughput by processing multiple batches before transferring data, it comes at
the cost of increased latency, as the entire layer must be processed before moving to the next layer.

By employing the zig-zag approach, we effectively trade off latency for throughput, optimizing the
use of GPU resources and minimizing data transfer overhead in offloaded deep learning computations.

5.3 Scheduling overlapping

The other design option we find to be performance critical but didn’t have time to include in our
implemantion is overlapping. As elaborated in flexgen paper, the technique parallelizes the oading
weights of the next layer, loading cache/activation of the next batch, storing cache/activation of the
previous batch, and the computation of the current batch as there’s no dependency between them.
Algorithm 1 summarizes the technique. More details can be found in algorithm 1 in Flexgen (5).
We found it critical to have the overlapping technique in our Section 6.

5



6 Evaluation

In this study, we conduct a comprehensive benchmarking analysis of model throughput across
several frameworks: Huggingface Accelerate (baseline), FlexGen without offloading, FlexGen with
offloading, vLLM with offloading, and vLLM with the addition of the zigzag forward pass technique.
Our experiments are centered around the OPT-13B model, a significant and complex model widely
used in natural language processing tasks. To execute these experiments, we utilize a robust hardware
setup, including two RTX 3090 GPUs (PCIe 4.0) with 24GiB single GPU memory, an AMD 7800x3D
with 128GB CPU memory, and a 4TB M.2 PCIe SSD.

One of the key challenges we address in this study is the size of the OPT-13B model when quantized to
fp16, which amounts to 52GiB. This size exceeds the capacity of both GPUs combined, necessitating
a strategic approach to model distribution and computation. To navigate this limitation, we explore
the effectiveness of offloading techniques, particularly in scenarios where the entire model cannot fit
into GPU memory simultaneously. Additionally, we investigate the impact of the zigzag forward pass
approach in vLLM, which aims to optimize GPU utilization and reduce data transfer overhead.

Serving Throughput (tokens/sec)

FlexGen 25.175
FlexGen w/o overlapping 22.801
Accelerate 16.950
vLLM with offloading 24.100
vLLM + zigzag 24.320

In our experimental evaluations, we observe interesting trends in the performance of different
frameworks of another classic technique overlapping. FlexGen demonstrates superior performance
over our solution when overlapping is considered. However, when overlapping is not enabled, vLLM
with offloading outperforms FlexGen. Interestingly, the introduction of the zigzag forward pass
technique in vLLM does not significantly impact performance in the absence of overlapping. This
leads us to believe that overlapping is a crucial factor for the effectiveness of zigzagging.

The results suggest that the performance gains achieved by FlexGen are primarily attributed to its
ability to overlap computation and communication, efficiently utilizing available resources. In contrast,
vLLM with offloading leverages offloading techniques effectively, particularly when overlapping is
not enabled in FlexGen.

7 Future works

7.1 Overlapping computation, loading and storing

Algorithm 1 Block Schedule with Overlapping
1: for i = 1 to generation length do
2: for j = 1 to num layers do
3: for k = 1 to num GPU batches do
4: load weight(i, j + 1, k) ▷ Load the weight of the next layer
5: store activation(i, j, k − 1) ▷ Store activation of the previous batch
6: store cache(i, j, k − 1) ▷ Store cache of the previous batch
7: load cache(i, j, k + 1) ▷ Load the cache of the next batch
8: load activation(i, j, k + 1) ▷ Load the activation of the next batch
9: compute(i, j, k) ▷ Compute this batch

10: synchronize() ▷ Synchronize all devices
11: end for
12: end for
13: end for

As discussed in Section 6, overlapping saves performance of FlexGen, and suggests a strong potential
to further improve our vLLM + zigzag performance.

6



7.2 Linear Programming to Find Optimal Offloading Strategy

A core contribution from Flexgen is that it proposes a linear programming-based search algorithm to
optimize the throughput within the search space. It considers the capacity and peak usage of GPU,
CPU, disk, and search for an optimal placement strategy of placing weight, KV cache, and activation
on GPU, CPU and disk. We can potentially employ this technique with our vLLM implemenation.
A wild idea is to take advantage of vLLM’s blockwise management strategy, so that KV cache can
be managed at finer granularity, and the vLLM’s logical to physical table can naturally embed the
information where the physical block is located.

8 Conclusion

Deploying Large Language Models (LLMs) on single GPU systems requires efficient resource man-
agement due to the limited availability and high demand of computational resources. Traditional
methods struggle with balancing computational overhead and memory usage, particularly for manag-
ing model weights and key-value (KV) cache. To improve this, we adopt "Zigzag Scheduling" from
the FlexGen framework within the vLLM architecture, which delays offloading model weights to
secondary storage like CPU memory or disk. This approach allows multiple batches to be processed
before offloading, reducing memory transfer frequency and minimizing I/O costs, thereby enhancing
system efficiency. Zigzag Scheduling further optimizes hardware usage by overlapping the loading
of weights for upcoming layers with the loading and storing of cache and activations for adjacent
batches, significantly increasing throughput and reducing idle times.

References
[1] AI, C. Command r+ documentation, April 2024.

[2] META PLATFORMS, I. Llama-2-70b-chat-hf, 2023.

[3] RAJBHANDARI, S., RUWASE, O., RASLEY, J., SMITH, S., AND HE, Y. Zero-infinity: Breaking
the GPU memory wall for extreme scale deep learning. CoRR abs/2104.07857 (2021).

[4] REN, J., RAJBHANDARI, S., AMINABADI, R. Y., RUWASE, O., YANG, S., ZHANG, M., LI, D.,
AND HE, Y. Zero-offload: Democratizing billion-scale model training. CoRR abs/2101.06840
(2021).

[5] SHENG, Y., ZHENG, L., YUAN, B., LI, Z., RYABININ, M., CHEN, B., LIANG, P., RÉ, C.,
STOICA, I., AND ZHANG, C. Flexgen: High-throughput generative inference of large language
models with a single gpu. In International Conference on Machine Learning (2023), PMLR,
pp. 31094–31116.

[6] TEAM, T. M. R. Introducing dbrx: A new state-of-the-art open llm, March 2024.

7


	Intro
	Related Work
	Background
	Motivation
	Design & Implementation
	Offloading
	Zig-zag block schedule
	Scheduling overlapping

	Evaluation
	Future works
	Overlapping computation, loading and storing
	Linear Programming to Find Optimal Offloading Strategy

	Conclusion

